Hybrid PSO-SA algorithm for training a Neural Network for Classification
نویسندگان
چکیده
In this work, we propose a Hybrid particle swarm optimization-Simulated annealing algorithm and present a comparison with i) Simulated annealing algorithm and ii) Back propagation algorithm for training neural networks. These neural networks were then tested on a classification task. In particle swarm optimization behaviour of a particle is influenced by the experiential knowledge of the particle as well as socially exchanged information. Particle swarm optimization follows a parallel search strategy. In simulated annealing uphill moves are made in the search space in a stochastic fashion in addition to the downhill moves. Simulated annealing therefore has better scope of escaping local minima and reach a global minimum in the search space. Thus simulated annealing gives a selective randomness to the search. Back propagation algorithm uses gradient descent approach search for minimizing the error. Our goal of global minima in the task being done here is to come to lowest energy state, where energy state is being modelled as the sum of the squares of the error between the target and observed output values for all the training samples. We compared the performance of the neural networks of identical architectures trained by the i) Hybrid particle swarm optimization-simulated annealing, ii) Simulated annealing and iii) Back propagation algorithms respectively on a classification task and noted the results obtained. Neural network trained by Hybrid particle swarm optimization-simulated annealing has given better results compared to the neural networks trained by the Simulated annealing and Back propagation algorithms in the tests conducted by us.
منابع مشابه
تنظیم بهینه و همزمان ساختار و پارامترهای شبکه عصبی با استفاده از الگوریتم آمیختار مبتنی بر جستجوی گرانشی برای کاربردهای دستهبندی و تقریب توابع
Determining the optimum number of nodes, number of hidden layers, and synaptic connection weights in an artificial neural network (ANN) plays an important role in the performance of this soft computing model. Several methods have been proposed for weights update (training) and structure selection of the ANNs. For example, the error back-propagation (EBP) is a traditional method for weights...
متن کاملDiagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural net...
متن کاملTraining Recurrent Neural Networks by a Hybrid PSO-Cuckoo Search Algorithm for Problems Optimization
Because of computational drawbacks of conventional numerical methods in solving complex optimization problems, researchers may have to rely on meta-heuristic algorithms. Particle swarm optimization (PSO) is one of the most widely used algorithms due to its simplicity of implementation and fast convergence speed. Also, the cuckoo search algorithm is a recently developed meta-heuristic optimizati...
متن کاملComparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کامل